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A B S T R A C T

Check-All-That-Apply (CATA) and Free-Comment (FC) provide a so-called contingency table containing citation
counts of words or descriptors (columns) by products (rows). This table is most often analysed using corre-
spondence analysis (CA). CA aims at decomposing dependence between products and descriptors into axes of
maximal and decreasing dependencies, which is reasonable if the dependence has been previously established by
a chi-square test. However, the p-value of this test is not valid when the observations are not independent or
when the contingency table contains too many low expected citation rates. In addition, rejecting independence
with a chi-square test only means that at least the first CA axis captures some dependence. This paper presents a
test to determine the number of axes of the CA that capture significant dependence and proposes a Monte-Carlo
approach to compute valid p-values for this test. The variability in the products’ coordinates in the CA space is
often evaluated by means of a total bootstrap procedure. The paper proposes to rely on this test to determine the
number of axes to consider for the Procrustes rotations of such a procedure. Finally, to investigate which words
are cited more often for each product, the paper proposes performing Fisher’s exact tests per cell on the derived
contingency table obtained by reversing the CA computations on the axes capturing significant dependence. The
benefits of accounting for the dimensionality of the dependence in the analyses are demonstrated on real CATA
data.

1. Introduction

In recent years, new consumer-oriented methods have emerged to
overcome the limitations of sensory descriptive analysis (Valentin,
Chollet, Lelièvre, & Abdi, 2012; Varela & Ares, 2012), including word
citation occurrence-based methods, which aim to collect product de-
scriptions from consumers using either their own words or a mutual
predefined list of descriptors. These descriptions are collected without
any quantification or product comparison. The most commonly used
word citation occurrence-based methods are Check-All-That-Apply
(CATA) (Adams, Williams, Lancaster, & Foley, 2007) and Free-Com-
ment (FC) as response to open-ended questions (ten Kleij & Musters,
2003). Ultra-flash profiling (UFP) (Perrin & Pagès, 2009) and labelled
sorting (Abdi & Valentin, 2007) could also be seen as word citation
occurrence-based methods, but the word-based descriptive data are not
the main output when using these two methods.

Data collected from a CATA or FC task are stored in a so-called
contingency table containing citation counts of words or descriptors
(columns) by products (rows). Each cell of the contingency table con-
tains the number of times a product was described by a word. The first

step to study such a dataset is to test for overall differences between
products. In the context of contingency tables collected using FC, this is
usually performed using a chi-square test (Galmarini, Symoneaux,
Chollet, & Zamora, 2013; Lahne, Trubek, & Pelchat, 2014; Lawrence
et al., 2013; Symoneaux, Galmarini, & Mehinagic, 2012). However,
computing the p-value of the chi-square test using the chi-square dis-
tribution is valid only if the following conditions are met: (i) the ob-
servations are independent, (ii) no expected cell count is less than five
in the contingency table (Agresti, 2007) and (iii) the contingency table
is not sparse (Renter, Higgins, & Sargeant, 2000). In the context of
contingency tables obtained using CATA or FC, these conditions are
rarely met, especially the first condition, as all subjects evaluate all the
products by assessing all the words. In the context of contingency tables
collected using CATA, to address the issue of the non-validity of the chi-
square distribution, Meyners, Castura, and Carr (2013) proposed to test
for overall differences between products using a Monte-Carlo test based
on combination of Cochran's Q statistics. In both contexts, if overall
difference between products is not established, pursuing further ana-
lyses is not recommended. When overall difference between products is
established, then a correspondence analysis (CA) (Benzécri, 1973) can
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be performed to visualise the association between products and words
on a factorial map that decomposes the dependence between products
and words into axes of maximal and decreasing dependencies. Fur-
thermore, it is common to represent the variability in the products’
coordinates in the CA space using confidence ellipses on the CA map.
Confidence ellipses can be constructed in two ways: parametric boot-
strap using a multinomial distribution (Antúnez, Ares, Giménez, &
Jaeger, 2016; Oppermann, de Graaf, Scholten, Stieger, & Piqueras-
Fiszman, 2017; Ringrose, 2012) or total bootstrap based on resampled
subjects (Alcaire et al., 2017; Cadoret & Husson, 2013; Vidal, Ares,
Hedderley, Meyners, & Jaeger, 2018). There are, to the best of our
knowledge, two approaches to interpret relations between products and
words in an objective manner. The first approach consists of computing
the chi-square per cell on the contingency table (Symoneaux et al.,
2012) to list words significantly more or less cited for each product;
these words contribute the most to the global chi-square statistic. The
second approach consists of performing the Multidimensional Align-
ment (MDA) on CA coordinates to interpret the cosine of the angle
between product vectors and word vectors in the full CA space (Carr,
Dzuroska, Taylor, Lanza, & Pansini, 2009; Meyners et al., 2013).

When overall difference between products is established, it only
means that at least the first axis of the CA captures a significant de-
pendence. From that result, there is a need to know how many other
axes capture a significant dependence. Moreover, all computations
performed with the analyses presented above are performed without
considering how many axes capture a sufficient dependence to be
considered significant. Thus, these methods do not take into account
the dimensionality of the dependence and potentially add noise or miss
important information needed for the interpretation.

The present paper proposes an approach that considers the di-
mensionality of the dependence when analysing CATA or FC data. The
first section introduces a test of dimensionality based on chi-square
statistic and on a Monte-Carlo approach to compute valid p-values. Chi-
square statistic was chosen over the alternative Monte-Carlo test pro-
posed by Meyners et al. (2013) because this latter is based on combi-
nation of Cochran’s Q statistics that are not related to CA. The paper
then explains how to take into account the information provided by the
test when investigating the variability in the products’ coordinates in
the CA space and the relations between products and words. In the
second section of this paper, the results obtained with this new ap-
proach are compared to those provided by the traditional analyses. In
the last part, the benefits and limitations of both approaches are dis-
cussed. Finally, a global conclusion is given.

2. Material and methods

2.1. Testing dependence captured by the CA axes

Because CA and chi-square statistic belong to the same rationale,
they are tightly related to each other. The tight relation between CA and
chi square statistic gives interesting properties that enable testing the
dependence captured by the CA axes. For this reason, the subsequently
proposed test relies on chi-square statistic and not the test based on
combination of Cochran’s Q statistics proposed by Meyners et al.
(2013). Further, contrarily to the Cochran's Q test that tests for equality
of citation proportions across products for a given word, the chi-square
test tests for independence between products and words and thus takes
into account the total numbers of citations of the products (their mar-
gins).

The chi-square statistic of a contingency table is linked to the ei-
genvalues of the CA performed on this contingency table by the fol-
lowing equation:

∑= ×χ N λ
i i

2

where χ2 is the chi-square statistic of the contingency table, N is the

sum of all the cells of the contingency table, and λi is the i-th eigenvalue
of the CA.

The sum of the eigenvalues of the CA can be seen as the effect size or
the absolute intensity of the dependence between rows and columns. It
is equal to the chi-square statistic divided by N and is thus based only
on the observed and expected probabilities of being in each cell of the
contingency table. Contrary to the chi-square statistic, it is independent
of the sample size. Based on the above equation, it is possible to test for
the dependence of each CA axis with a stepwise procedure (Camiz &
Gomes, 2013). The idea is to test, at each step, whether removing the
dependence captured by the axes of all the previous steps still results in
rejecting independence in the sense of the chi-square test, i.e., if there is
still enough dependence to be considered significant.

Suppose that we have a contingency table X of size n × p. The rank
of X is equal to the minimum of (n-1) and (p-1) or less if there is a
singularity. Let us denote this rank D. Let k vary from 1 to D until
independence is not rejected for an axis. The principle of the stepwise
procedure is as follows:

(i) At the k-th step, compute the following statistic: = × ∑ =
Q N λk i k

D
i

(ii) Compare this statistic to the quantiles of a chi-square distribution
with (n-k)(p-k) degrees of freedom to obtain a p-value

(iii) If this p-value is less than the predetermined α risk, then set
k = k + 1.

Running this procedure until independence is not rejected provides
the number of CA axes that capture some significant dependence and
thus the dimensionality of the data in the sense of dependence. The
statistic computed at step k = 1 is equal to the statistic of the chi-square
test. At step k (1 ≤ k ≤ D), the test is conceptually equivalent to
perform a chi-square test on the derived contingency table represented
only by the k-th to the D-th CA axes.

In practice, as stated in introduction (Section 1), computing the p-
value of the chi-square test using the chi-square distribution is not valid
in the context of contingency tables collected using CATA and FC. To
overcome this limitation, a Monte-Carlo approach (Adery, 1968) is
proposed. In such an approach, a large number of datasets are simu-
lated under the null hypothesis investigated and then the statistic of
interest is computed for each simulated dataset. These computations
enable the user to obtain an empirical distribution under the null hy-
pothesis with no probabilistic assumption. The statistic of interest
computed on the real dataset is then compared to those of the simulated
distribution under the null hypothesis, and the p-value is the proportion
of the simulated statistics more extreme than or equal to the observed
one. Here, the null hypothesis is independence between products and
words on the k-th axis and the statistic of interest is Qk.

The simulated data under the null hypothesis must be consistent
with the nature of the data. In our case, the contingency table is ob-
tained by summing the number of citations of each word for each
product across the subjects. Simulating data by considering only the
information provided by the observed contingency table, using, for
example, Patefield’s algorithm (Patefield, 1981), omits the subjects’
individual information and thus is not appropriate. To overcome this
limitation, independence can be simulated by randomly reallocating
each word citation to a product by subject. However, this approach is
problematic because it does not take into account the semantic nature
of the words, so it could lead to unrealistic individual simulated data.
For example, if a subject used the words “hard” and “soft” to describe a
set of products, one can hope that both of these words were not used to
describe the same product, but that could happen after random re-
allocation. For these reasons, this approach is also not appropriate. A
more appropriate alternative to simulate consistent data consists of
considering whole descriptions instead of words. Here, a description
refers to the set of words used by one subject to describe one product.
As these descriptions are indeed observed, they are realistic from a
semantic point of view.
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Thus, to obtain an empirical p-value for the test of dependence of
each axis of the CA, a Monte-Carlo approach following these steps is
proposed:

(i) Simulate B contingency tables by permuting the product labels of
descriptions at the individual level and then compute the corre-
sponding virtual contingency table

(ii) Perform a CA on each of the simulated contingency tables
(iii) Compute all Qk(1 ≤ k ≤ D) statistics for each of the simulated

contingency tables

(iv) Compute the p-value of each Qk as: + ∑ ≥

+
= I Q Q

B
1 ( )

1
s
B

ks kobs1

where I is the identity function equal to 1 when its argument is true
and 0 otherwise, B is the number of simulations (set to 1000 in fol-
lowing examples), Qkobs is the observed statistic at step k, Qks is the S-th
(1 ≤ S ≤ B) statistic at step k computed from the simulations and 1
stands for the observed contingency table (Davison & Hinkley, 1997).

The permutation procedure proposed here is the same one as the
one proposed by Meyners et al. (2013) and is similar to the one pro-
posed by Meyners and Pineau (2010) and Wakeling, Raats, and MacFie
(1992).

2.2. Accounting for the dimensionality of the dependence when investigating
the variability in the products’ coordinates in the CA space

Performing a CA on the word-by-product contingency table does not
account for the subject’s variability, which means that it is impossible to
assess the stability of the products’ coordinates in the CA space, and
thus it is impossible to know if the products are significantly dis-
criminated. Computing the products’ confidence ellipses with para-
metric bootstrap (Ringrose, 2012) presents two major limitations. First,
it does not take into account the subjects’ individual source of variation.
Second, it assumes observations are independent from each other, for
both products and words, which is not the case for CATA and FC data as
explained in Section 2.1. This approach is thus not appropriate. The
total bootstrap methodology (Cadoret & Husson, 2013) is well suited to
compute confidence ellipses for the products’ coordinates in a CA space.
This methodology consists of generating virtual panels with random
resampling with replacement of the actual panel. Then, the products’
configurations of the virtual panels are rotated on the products’ con-
figuration of the actual panel thanks to Procrustes rotations. The total
bootstrap methodology enables to take into account the specificity of
the subjects’ individual data as well as the dependence between ob-
servations. The main issue when using this methodology is to determine
how many axes to take into account in the Procrustes rotations. It seems
that this decision is usually arbitrary and can lead to taking into ac-
count for example two axes (Alcaire et al., 2017; Vidal et al., 2018) or
four axes (Antúnez, Vidal, de Saldamando, Giménez, & Ares, 2017). The
more axes one takes into account when performing the Procrustes ro-
tations, the more degrees of freedom are available to find an optimal
rotation and thus, the smaller the ellipses. Then, the decision to take
into account only two axes can probably be explained by the fact that
this is the most conservative option and thus protects from over-inter-
pretation. However this practice can lead to overestimating the varia-
bility in the products’ coordinates and thus to underestimating pro-
ducts’ discrimination. It is necessary to have an objective criterion for
selecting the number of dimensions of the space in which the Procrustes
rotations must be performed. For that purpose, applying Procrustes
rotations in the subspace generated by the significant CA axes is pro-
posed.

2.3. Accounting for the dimensionality of the dependence when investigating
relations between products and words

The two approaches presented in the introduction, the chi-square

per cell and the MDA, differ in how they consider the data, but none of
them considers the dimensionality of the dependence. In addition, MDA
is flawed by the fact that it considers the angle between a product
vector and a word vector but not their norms. Indeed, the vector norm
represents the strength with which a product or a word deviates from
the independence, which is crucial information that must be taken into
account. To account for all the information, scalar products should be
used instead of MDA. Even if the scalar products are the valid way to
interpret relations between the product vectors and the word vectors in
the CA space, it still has two limitations. First, the values of scalar
products can be negative or positive and they are not bounded, thus
they are not intuitive, difficult to interpret and can only be compared
relative to each other. Second, to the best of our knowledge, there is no
criterion to determine if a given scalar product is large enough to
consider the association significant. Thus, the other approach, chi-
square per cell, was retained. Nevertheless, this approach has some
limitations. The chi-square distribution is not valid for use in this
context because of the reasons evoked in introduction (Section 1) and
even more because chi-square distribution is not adapted for 2 × 2
contingency tables (Yates, 1984). This limitation can be overcome using
the Fisher’s exact test (Fisher, 1935). This test has the benefit of not
relying on any distribution and then requires no specific conditions to
be met. The second limitation is that chi-square per cell is performed on
the raw dataset and thus on all axes of dependence, which may result in
accounting for axes that are just noise and thus may lead the user to
over-interpret his or her data. To overcome this limitation and de-
termine which words are the most cited for each product, the following
approach is proposed:

(i) Establish the number of significant CA axes in the sense of de-
pendence using the procedure presented in Section 2.1

(ii) Reverse the CA computations on the significant axes to compute
the derived contingency table corresponding to the significant axes

(iii) Perform Fisher’s exact tests per cell on the derived contingency
table accounting for the significant axes

The step of reversing the CA computation on the significant axes is
detailed in the Appendix.

2.4. Case study datasets

The study took place at the Centre for Taste and Feeding Behaviour,
Dijon, France. Fifty-nine regular (at least once per two weeks) con-
sumers of red wine (16 men, 43 women, 18 to 60 years old) were re-
cruited from a population registered in the ChemoSens Platform's
PanelSens database. This database has been registered with the relevant
authority (Commission Nationale Informatique et
Libertés—CNIL—authorisation no. 1148039). The subjects were com-
pensated for their participation in the study. They carried out a CATA
task on four French red wines from different regions: Bordeaux (Bor),
Languedoc (Lan), Gamaret wine from Beaujolais (Gam) and Val de
Loire (Val). For each product, the CATA task was carried out by sensory
modality: visual, olfactory and gustatory. The gustatory description was
itself divided into global perception and aromas. All the CATA de-
scriptors were selected thanks to the expertise of wine professionals.
The collected data were then stored in four contingency tables, one per
step, by cross tabulating the citation counts of the descriptors (columns)
by the products (rows).

2.5. Analyses

All analyses and computations were performed using R 3.5.1 (R
Core Team, 2018). The examples are given using contingency tables
collected with CATA but it is important to remember that all the pre-
sented approaches can be used with contingency tables collected with
FC.
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The aim of this case study is to compare the results provided by the
analytical methods proposed in Sections 2.1 to 2.3 to those from
methods belonging to the chi-square rationale commonly used on
contingency tables. For that purpose, the results provided by the chi-
square distribution and the Monte-Carlo approach for computing the p-
values of the tests of dependence were compared, as well as the dif-
ference in results after performing the Procrustes rotations in the total
bootstrap procedure using either the significant axes (when more than
two) or the first two axes. For the tests of dependence, any p-value less
than the α risk of 5% was considered significant. Ellipses of the total
bootstrap procedure were computed with an α risk of 5%. In addition,
the results of the use of Fisher’s exact tests per cell accounting for all the
axes were compared to the results from Fisher’s exact tests per cell
accounting for the significant axes in the sense of dependence. The
Fisher’s exact tests were conducted with a one-sided greater alternative
hypothesis, which means that only cells with a larger observed value
than the expected value were investigated. The results of these tests are
presented with two different levels of α risk, namely α = 5% and
α = 15%. The motivation for this is not to miss descriptive information
concerning the products. The results presented for α = 5% can be
considered as significant descriptions of the products while the results
presented for α = 15% can be considered as tendencies in the de-
scription of the products.

It is important to highlight here that the aim of the following case
study was not to conduct full interpretation ending with product
comparisons, but to compare only the outputs of the proposed analyses
to those of the more traditional ones in order to underline the potential
differences between them.

3. Results

3.1. Dependence of CA axes

Table 1 shows similar conclusions between the results provided by
the chi-square distribution and the Monte-Carlo approach for the tests
of dependence of the first axes. For the gustatory global perception
data, regarding the other axes, the same conclusions are also provided
by the two approaches: two axes are significant in the sense of depen-
dence. In contrast, differences exist between the results provided by the
chi-square distribution and the Monte-Carlo approach concerning the
tests of dependence of the second and the third axes for the olfactory
data and gustatory aromas data. According to the non-valid chi-square
distribution, only the first axis is significant in the sense of dependence
whereas the Monte-Carlo approach reveals that there are actually two
significant axes in the sense of dependence for the gustatory aromas
data and three significant axes in the sense of dependence for the ol-
factory data.

3.2. Variability in the products’ coordinates in the CA space

Fig. 1 shows information in line with the tests of dependence based
on the Monte-Carlo approach.

For the visual sense CA, Fig. 1 (a) shows that ellipses confirm the
results provided by the Monte-Carlo approach since the ellipses’ pro-
jections on the second axis strongly overlap.

For the olfactory sense CA, Fig. 1(d) shows that the third axis indeed
captures some dependence and information as it isolates the product
Val from the others. If the usual relative criterion of accounting for
approximately 70–80% of the inertia was used for this CA, the third
dimension would not have been considered and thus some information
would have been lost. Further, the comparison of Fig. 1(b) and Fig. 1(c)
is a great example of possible misinterpretations and missed informa-
tion resulting from arbitrarily setting the number of axes to two to
perform the Procrustes rotations in the total bootstrap procedure. In-
deed, looking at Fig. 1(b), the product Val seems not to be different
from the products Gam and Lan whereas it is indeed on the third axis as
well as on the second axis when all significant axes are considered for
Procrustes rotation (Fig. 1(c)). This information is taken into account
when setting the relevant number of axes to perform the Procrustes
rotations. Thus looking at Fig. 1(c), we can see that Val is different from
Gam and Lan. This example shows the real importance of taking into
account all the significant axes in the sense of dependence to perform
the Procrustes rotations in the total bootstrap procedure.

For the gustatory global perception CA, ellipses also confirm the
results provided by the Monte-Carlo approach since the products Val
and Lan are different from the products Bor and Gam on the second axis
(Fig. 1(e)).

For the gustatory aromas CA, ellipses, computed with the most
conservative option, show that the second axis captures a significant
dependence as two product pairs (Val vs. Bor & Val vs. Lan) are dif-
ferent on the second axis, while the p-values computed using the chi-
square distribution suggest that this second axis is not significant. In
this example, the Monte-Carlo approach, compared to the chi-square
distribution, seems to be better aligned with the information provided
by the ellipses.

3.3. Relations between products and words

Fig. 2 shows that using Fisher’s exact tests per cell on all the axes
leads to the over-interpretation of some dependent relations that are
not significant. Indeed, for the visual data, when accounting for all the
axes, there are tendencies for the product Gam to be more associated
with the words Black and Opaque whereas when accounting only for
the first significant axis, the product Gam is definitely associated with
the word Violet and not associated with the words Black and Opaque.
The product Val, when accounting for all the axes, is associated with the
word Violet whereas when accounting only for the first significant axis,
the product Val is not associated with any words. For the gustatory
aromas data, when accounting for all the axes, there are tendencies for
the products Gam and Lan to be more associated with the word Red
fruit whereas when accounting for the first two significant axes, the
product Gam is not associated with any words, and the product Lan is
definitely associated with the word Red fruit. These two examples show
the need to perform Fisher’s exact tests per cell using only the

Table 1
P-values of the test of dependence for each axis of each correspondence analysis performed on the four contingency tables computed by either the chi-square
distribution or the Monte-Carlo approach.

Sensory modality Computation of the p-value Chi-square/Axis 1 Axis 2 Axis 3

Visual sense Chi-square distribution < 0.001 0.9882 0.9403
Monte-Carlo approach < 0.001 0.5134 0.3016

Olfactory sense Chi-square distribution < 0.001 0.0545 0.5132
Monte-Carlo approach < 0.001 0.0019 0.0089

Global perception from the gustatory sense Chi-square distribution < 0.001 0.0309 0.8652
Monte-Carlo approach < 0.001 <0.001 0.1448

Aromas from the gustatory sense Chi-square distribution 0.0032 0.3378 0.8635
Monte-Carlo approach < 0.001 0.0069 0.2507
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information provided by the significant axes in the sense of depen-
dence. This approach prevents the user from over-interpreting some of
the associations that are not sufficiently strong to be considered sig-
nificant and prevents the user from missing some significant associa-
tions due to tests performed on a dataset containing noise.

The example of the global perception gustatory data shows that the
differences between accounting for all the axes and accounting for the
significant axes in the sense of dependence sometimes do not drastically
change the conclusions. In this example, the differences are only based
on some tendencies of associations.

For the olfactory data, by construction, no difference exists since all
the axes are significant.

4. Discussion

The Monte-Carlo approach had a real benefit in the computation of
the p-values of the chi-square test and the tests of dependence of the CA
axes. Indeed, it enabled the consistent estimation of the distribution
under the null hypothesis that takes into account the nature of the data.
The examples presented showed that p-values computed with the
Monte-Carlo approach and with the chi-square distribution do not al-
ways lead to different conclusions. However, it is common to find dif-
ferences between these two approaches. As shown in the examples, the
Monte-Carlo approach always provided information in line with the one
provided by the confidence ellipses contrary to the chi-square dis-
tribution. This finding shows that in addition to its theoretical benefit of
taking into account the nature of the data, in practice the Monte-Carlo
approach also provided conclusions consistent with other information.
Furthermore, in the given examples, the p-values of the Monte-Carlo
approach were systematically lower than those computed using chi-
square distribution. This finding suggests a higher power in di-
mensionality detection for the Monte-Carlo approach. Despite its

benefits, the Monte-Carlo approach has a limitation: the computational
time. Simulating 1000 contingency tables with the procedure explained
in Section 2.1.2 takes between 10 and 20 s. If the user wants to simulate
more contingency tables to better estimate the distribution under the
null hypothesis, the computational time can rapidly increase.

To the best of our knowledge, testing the dependence of the CA axes
has never been used in sensory and consumer research. This test is a
great improvement in the analysis of contingency tables collected with
CATA and FC. It enables the determination of the number of dimensions
in which the dependence between products and words, if any, is large
enough to be considered significant according to a statistical criterion.
It prevents misinterpretations or over-interpretations and missing re-
levant information provided by CA axes beyond the first plan. The re-
sult of this test is also a solid basis on which further computations can
rely such as the total bootstrap procedure and the investigation of as-
sociations between products and words. For the total bootstrap proce-
dures applied on CATA and FC data, these tests are a real improvement
as they provide an objective and relevant manner of determining how
many axes must be taken into account for the Procrustes rotations,
which prevents the user from considering two products as not being
significantly discriminated when they are indeed.

Fisher’s exact tests were performed with a one-sided greater alter-
native meaning that only observed counts that were potentially larger
than the expected counts were investigated. This choice was made be-
cause of the task asked to subjects. Concerning the FC task, it is asked to
subjects to describe the products in their own words. It is thus rea-
sonable to assume that the words used to describe a product are indeed
descriptive of and applicable to the product. However, assuming that
because a subject does not say a given word for a product implies that
this word is not applicable to the product is a very strong assumption.
For the CATA task, the situation is a little different: subjects are asked to
quote among a list of words, which ones apply to the products. It is thus

Fig. 1. Correspondence analysis of the four contingency tables with confidence ellipses computed with total bootstrap: (a) axes 1–2 of the visual sense with total
bootstrap considering the first two axes, (b) axes 1–2 of the olfactory sense with total bootstrap considering the first two axes, (c) axes 1–2 of the olfactory sense with
total bootstrap considering the three axes, (d) axes 3–2 of the olfactory sense with total bootstrap considering the three axes, (e) axes 1–2 of the global perception
from the gustatory sense with total bootstrap considering the first two axes, (f) axes 1–2 of the aromas from the gustatory sense with total bootstrap considering the
first two axes.
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Fig. 2. Contingency tables of the four CATA tasks. The highlighted cells show the significant results of Fisher’s exact tests per cell considering all the axes and the
significant results of Fisher’s exact tests per cell considering the significant axes in the sense of dependence. The cells highlighted in light green are significant for
α = 5%, and those highlighted in deep green are significant for α= 15%. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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reasonable to assume that a descriptor that was not used to describe a
product was not perceived by the subject. This can be considered a
more active decision than not to cite some words in a FC task, but still
the guideline was to “check-all-that-apply” and not to “not check what
does not apply”. Considering these points, the decision of performing
one sided greater alternative tests or two-sided alternative tests is up to
the discretion of the user.

As an overall limitation, it has to be mentioned that the practical
results provided through the examples arose from datasets where only
four products were evaluated using CATA. The relevant results of this
paper need to be confirmed on other datasets with more products and
with different levels of similarity between the products.

5. Conclusion

This paper introduced a complete set of statistical tools enabling to
account for the dimensionality of the dependence in contingency tables
obtained with CATA and FC. First, this set includes a chi-square-based
test for determining the number of significant axes in CA of a con-
tingency table. As p-values derived from chi-square distribution are not
valid in the context of contingency tables based on CATA or FC data, an
alternative Monte-Carlo approach was proposed. Secondly, it was
shown that the Procrustes rotations in a total bootstrap procedure to

derive product confidence ellipses should be done in the subspace de-
fined by the significant axes. Finally, to investigate which words are
cited more often for each product, the paper proposed to perform
Fisher’s exact tests per cell on the derived contingency table obtained
by reversing the CA computation on the axes capturing significant de-
pendence. These new tools should help the users of CATA and FC to
analyse their data with more precision as the methods removed noise
due to non-significant dimensions in term of dependence between
products and attributes or words.
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Appendix:. Reversing the correspondence analysis computations

Let X be a contingency table. Performing a correspondence analysis on X consists of computing the standardised residual matrix R from X and
then factorising R using Singular Value Decomposition (SVD). Factorising R using a SVD consists of writing R as follows:

=R UDV '

The SVD of R is performed with weights for rows and columns equal to their respective marginal probabilities. The coordinates of the rows and
the columns as well as the eigenvalues of the CA can directly be computed from U, D and V. For more details on this process and the computations,
one can refer to Bock (2011).

Reversing the CA computations on the significant axes consists of computing Rsig as follows:

=R U D Vsig sig sig sig
'

where Usig is determined from the rows coordinates of only the significant axes, Dsig is determined from the eigenvalues of only the significant axes
and Vsig

' is determined from the columns coordinates of only the significant axes. Therefore, non-significant dependence is discarded. One critical
aspect in the computations ofUsig andVsig

' is to determine if the software used to perform the CA returns principal coordinates or standard coordinates
of the rows and the columns. Usig and Vsig

' have to be weighted back by the observed marginal probabilities before the computation of Rsig.
Xsig can then be computed from Rsig using the observed expected probabilities and the observed grand sum of X.
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